Posttranslational Control of Cdc25 Degradation Terminates Drosophila’s Early Cell-Cycle Program

نویسندگان

  • Stefano Di Talia
  • Richard She
  • Shelby A. Blythe
  • Xuemin Lu
  • Qi Fan Zhang
  • Eric F. Wieschaus
چکیده

In most metazoans, early embryonic development is characterized by rapid mitotic divisions that are controlled by maternal mRNAs and proteins that accumulate during oogenesis. These rapid divisions pause at the midblastula transition (MBT), coinciding with a dramatic increase in gene transcription and the degradation of a subset of maternal mRNAs. In Drosophila, the cell-cycle pause is controlled by inhibitory phosphorylation of Cdk1, which in turn is driven by downregulation of the activating Cdc25 phosphatases. Here, we show that the two Drosophila Cdc25 homologs, String and Twine, differ in their dynamics and that, contrary to current models, their downregulations are not controlled by mRNA degradation but through different posttranslational mechanisms. The degradation rate of String protein gradually increases during the late syncytial cycles in a manner dependent on the nuclear-to-cytoplasmic ratio and on the DNA replication checkpoints. Twine, on the other hand, is targeted for degradation at the onset of the MBT through a switch-like mechanism controlled, like String, by the nuclear-to-cytoplasmic ratio, but not requiring the DNA replication checkpoints. We demonstrate that posttranslational control of Twine degradation ensures that the proper number of mitoses precede the MBT.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dual mode of degradation of Cdc25 A phosphatase.

The Cdc25 dual-specificity phosphatases control progression through the eukaryotic cell division cycle by activating cyclin-dependent kinases. Cdc25 A regulates entry into S-phase by dephosphorylating Cdk2, it cooperates with activated oncogenes in inducing transformation and is overexpressed in several human tumors. DNA damage or DNA replication blocks induce phosphorylation of Cdc25 A and its...

متن کامل

Expression of the cell cycle control gene, cdc25, is constitutive in the segmental founder cells but is cell-cycle-regulated in the micromeres of leech embryos.

The identifiable cells of leech embryos exhibit characteristic differences in the timing of cell division. To elucidate the mechanisms underlying these cell-specific differences in cell cycle timing, the leech cdc25 gene was isolated because Cdc25 phosphatase regulates the asynchronous cell divisions of postblastoderm Drosophila embryos. Examination of the distribution of cdc25 RNA and the zygo...

متن کامل

Tribbles Coordinates Mitosis and Morphogenesis in Drosophila by Regulating String/CDC25 Proteolysis

Morphogenesis and cell differentiation in multicellular organisms often require accurate control of cell divisions. We show that a novel cell cycle regulator, tribbles, is critical for this control during Drosophila development. During oogenesis, the level of tribbles affects the number of germ cell divisions as well as oocyte determination. The mesoderm anlage enters mitosis prematurely in tri...

متن کامل

PAR proteins direct asymmetry of the cell cycle regulators Polo-like kinase and Cdc25

Cell cycle lengths vary widely among different cells within an animal, yet mechanisms of cell cycle length regulation are poorly understood. In the Caenorhabditis elegans embryo, the first cell division produces two cells with different cell cycle lengths, which are dependent on the conserved partitioning-defective (PAR) polarity proteins. We show that two key cell cycle regulators, the Polo-li...

متن کامل

Cell Divisions in the Drosophila Embryonic Mesoderm Are Repressed via Posttranscriptional Regulation of string/cdc25 by HOW

BACKGROUND Cell-cycle progression is tightly regulated during embryonic development. In the Drosophila early embryo, the levels of String/Cdc25 define the precise timing and sites of cell divisions. However, cell-cycle progression is arrested in the mesoderm of gastrulating embryos despite a positive transcriptional string/cdc25 activation provided by the mesoderm-specific action of Twist. Wher...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2013